Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters








Year range
1.
Chinese Journal of Applied Physiology ; (6): 1-5, 2022.
Article in Chinese | WPRIM | ID: wpr-927888

ABSTRACT

Objective: To investigate the effects of PM2.5 exposure at different stages of early life on the prefrontal cortex of offspring rats. Methods: Twelve pregnant SD rats were randomly divided into four groups: Control group (CG), Maternal pregnancy exposure group (MG), Early postnatal exposure group (EP) and Perinatal period exposure group (PP), 3 rats in each group. The pregnant and offspring rats were exposed to clean air or 8-fold concentrated PM2.5. MG was exposed from gestational day (GD) 1 to GD21. EP was exposed from postnatal day (PND) 1 to PND21, and PP was exposed from GD1 to PND21. After exposure, the prefrontal cortex of 6 offspring rats in each group was analyzed. HE staining was used to observe the pathological damage in the prefrontal cortex. ELISA was employed to detect neuroinflammatory factors, and HPLC/MSC was applied to determine neurotransmitter content. Western blot and colorimetry were applied for detecting astrocyte markers and oxidative stress markers, respectively. Results: Compared with MG and CG, the pathological changes of prefrontal cortex in PP and EP were more obvious. Compared with MG and CG, the neuroinflammatory factors (IL-1, IL-6, TNF-α) in PP and EP were increased significantly (P<0.01), the level of MT were decreased significantly (P<0.05), and the level of oxytocin (OT) showed a downward trend; the level of neurotransmitter ACh was also increased significantly (P<0.01). Compared with MG and CG, the GFAP level of PP and EP showed an upward trend, the level of oxidative stress index SOD in PP and EP was decreased significantly (P<0.01), and the level of ROS was increased significantly (P<0.01). Compared with the offspring rats of CG and MG, the CAT level of PP was decreased significantly (P<0.01, P<0.05). Compared with the offspring rats of CG, the CAT level of EP was decreased significantly (P<0.05). There was no significant difference in IL-1, IL-6, TNF-α, MT, OT, ACh, GFAP, SOD, ROS and CAT levels between PP and EP, or MG and CG. Conclusion: PM2.5 exposure in early life has adverse effects on the prefrontal cortex of offspring male rats, and early birth exposure may be more sensitive.


Subject(s)
Animals , Female , Male , Pregnancy , Rats , Interleukin-1/pharmacology , Interleukin-6 , Neurotransmitter Agents , Particulate Matter/toxicity , Prefrontal Cortex , Rats, Sprague-Dawley , Reactive Oxygen Species , Superoxide Dismutase , Tumor Necrosis Factor-alpha/pharmacology
2.
Chinese Journal of Applied Physiology ; (6): 240-244, 2020.
Article in Chinese | WPRIM | ID: wpr-827810

ABSTRACT

To investigate the inflammatory mechanism of nasal instillation of fine particulate matter (PM)on hippocampal tissue injury in mice. Thirty C57BL/6J mice were randomly divided into 3 groups(n=10):control group, low-dose group, high-dose group. The nasal instillation doses of PM in the low-dose group and the high-dose group were 1.5 mg/kg BW and 7.5 mg/kg BW, respectively, and the control group was given saline with an equal volume. Saline was sprayed once every other time for 12 times. The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were determined by ELISA method. HE staining and electron microscopy were used to observe the pathological changes and ultrastructure of lung tissue and hippocampus. The inflammatory cytokine levels in hippocampus were detected by antibody chip technique. There was no significant effect of PM nasal instillation on serum TNF-α, IL-1β and IL-6 levels (P>0.05), and there was no obvious pathological changes in lung tissue structure. In hippocampus, low-dose and high-dose PM exposure could lead to disordered neuronal arrangement in the hippocampal CA3 region, and there were neurological changes around the neuron cells and ultrastructural changes such as edema around small blood vessels. Compared with the control group, the levels of inflammatory cytokines such as CX3CL1, CSF2 and TECK in the low-dose group were increased significantly (P <0.05), while sTNFR1 was decreased significantly (P<0.05); the inflammatory factors CX3CL1, CSF2, and TCA-3 were significantly increased in the high-dose group (P<0.05), while leptin, MIG, and FASLG were significantly decreased (P<0.05). Nasal instillation of PM can induce tissue damage in the hippocampus of mice, and its mechanism of action may be the olfactory brain pathway. The increasing of TNF-α and IL-6 and the decreasing of sTNFR1 and FASLG may be involved in inflammatory mechanisms.

3.
Chinese Journal of Applied Physiology ; (6): 245-249, 2020.
Article in Chinese | WPRIM | ID: wpr-827809

ABSTRACT

To explore the effects of repeated immobilization stress on hypothalamic-pituitary-ovarian axis in female rats. Methods: Forty female SD rats were randomly divided into two groups: control group (n=20) and experimental group (n=20). One group was fed normally, the other group was subjected to incremental load restraint stress. Brake stress once a day in the retainer (starting at 9: 00 a.m.), braking for 2 hours on the first day, increasing load by 0.5 hours a day for two weeks. Body weight, estrous cycle, sex hormone, organ coefficient, pathology and expression of related genes were detected to explore the harm of hypothalamic-pituitary-ovarian axis. Repeated immobilization stress caused weight loss, prolonged estrous cycle, and changed the organ coefficient and morphology of ovaries and uterus. QPCR technique was used to detect the related genes. It was found that the expressions of gonadotropin releasing hormone, pituitary gonadotropin releasing hormone receptor, follicle stimulating hormone and luteinizing hormone mRNA were decreased significantly, while the expressions of ovarian follicle stimulating hormone and luteinizing hormone receptor mRNA were increased significantly. The expression of estrogen receptor mRNA in ovary and uterus was decreased significantly. Repeated immobilization stress may disrupt the estrous cycle by interfering with the endocrine regulation of the hypothalamic-pituitary-ovarian axis, thus damaging the gonadal and reproductive endocrine function of female animals.

4.
Chinese Journal of Applied Physiology ; (6): 97-100, 2019.
Article in Chinese | WPRIM | ID: wpr-776552

ABSTRACT

OBJECTIVE@#To clarify the genotoxicity induced by acute exposure of ozone with different concentrations on pulmonary cells in rats.@*METHODS@#Thirty-six Wistar rats were randomly divided into control group (filtered air exposure) and ozone exposure group (0.12 ppm, 0.5 ppm, 1.0 ppm, 2.0 ppm, 4.0 ppm) with 6 in each group. After rats were exposed to different concentrations of ozone for 4 h, lung tissues were taken and single cells were isolated. Then, 8-hydroxydeoxyguanosine (8-OHdG) was quantitatively detected by enzyme-linked immunosorbent assay. Comet assay, micronucleus test and DNA- protein cross-linking assay were used to analyze DNA and chromosome damages.@*RESULTS@#Compared with the control group, the content of 8-OHdG in lung tissue was increased significantly from the ozone exposure concentration of 0.12 ppm, reaching the highest value at 0.5 ppm. With the increase of ozone exposure concentration, the tail rate of comets was increased gradually, and there was a significant dose-effect relationship. The cross-linking rate of DNA- protein was increased first and then was decreased with a maximum value at 2.0 ppm group. Although the micronucleus rate of lung cells showed an upward trend, there was no significant difference compared with the control group.@*CONCLUSION@#Acute exposure of ozone at low concentrations (0.12 ppm) could lead to DNA damage in the pulmonary cells of rats, while no significant chromosome damage was found even in the group with ozone concentration reached to 4 ppm.


Subject(s)
Animals , Rats , Comet Assay , DNA Damage , Lung , Cell Biology , Pathology , Micronucleus Tests , Ozone , Random Allocation , Rats, Wistar
5.
Chinese Journal of Applied Physiology ; (6): 193-198, 2019.
Article in Chinese | WPRIM | ID: wpr-776531

ABSTRACT

OBJECTIVE@#To investigate the vascular damage effects and possible mechanism of acute exposure to ozone (O) in male Wistar rats.@*METHODS@#One hundred and twenty male Wistar rats were randomly divided into six groups, 20 in each group. The experimental animals were placed in a gas poisoning cabinet, the control group was exposed to filtered air, and the treatment group was exposed to ozone at concentrations of 0.12 ppm, 0.5 ppm, 1.0 ppm, 2.0 ppm, and 4.0 ppm, respectively, for 4 hours. Arterial blood pressure data were obtained by PC-lab medical physiological signal acquisition system. Blood rheology indicators and blood biochemical indicators were detected by Tianjin Dean Diagnostic Laboratory. Serum endothelin-1 (ET-1), homocysteine (HCY), von Willebrand factor (vWF), 8-hydroxydeoxyguanosine (8-OhdG), interleukin (IL-6) and tumor necrosis factor alpha (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA) microplate assay. Oxidative stress indicators superoxide dismutase (SOD) activity and malondialdehyde (MDA) were determined by xanthine oxidase method, thiobarbituric acid (TBA) method, reduced glutathione (GSH) and nitric oxide (NO) were tested by using microplate colorimetry. Paraffin sections were prepared from thoracic aorta tissue, and vascular structure was observed by HE staining.@*RESULTS@#Acute exposure to 0.12 ppm ozone could cause a significant increase in arterial systolic blood pressure (SBP). Exposure to different concentrations of ozone could cause a significant increase in plasma viscosity, and the K value of the ESR equation was significantly increased in the 1.0 ppm ozone exposure group. Both the relative and reduced viscosities were significantly reduced at ozone concentrations of 0.5 ppm and 4.0 ppm, while the red blood cell deformation index was increased significantly at ozone concentrations of 0.12 ppm, 0.5 ppm, 1.0 ppm, and 2.0 ppm. Acute ozone exposure resulted in the decrease of total cholesterol content. The content of high-density lipoprotein cholesterol (HDL-C) was significantly reduced in the 0.12 ppm ozone exposure group. When the ozone concentration was higher than 1.0 ppm, the body may also had an inflammatory reaction (increased TNF-α) and oxidative stress (increased MDA, decreased GSH). Acute exposure to ozone could lead to elevated levels of ET-1 in the blood, with significant differences in the 4.0 ppm concentration group, while HCY levels were decreased firstly and then increased, reaching the highest in the 1.0 ppm concentration group. No obvious pathological changes were observed in the thoracic aorta.@*CONCLUSION@#Acute ozone exposure can affect arterial blood pressure, blood rheology and cholesterol metabolism in rats. The possible mechanism is that ozone exposure leads to inflammatory reaction and oxidative stress reaction, causing vascular endothelial function damage, and vascular endothelial cells increase with ozone exposure concentration.


Subject(s)
Animals , Male , Rats , Blood Vessels , Wounds and Injuries , Deoxyguanosine , Blood , Endothelin-1 , Blood , Homocysteine , Blood , Interleukin-6 , Blood , Malondialdehyde , Oxidative Stress , Ozone , Toxicity , Rats, Wistar , Superoxide Dismutase , Tumor Necrosis Factor-alpha , Blood , von Willebrand Factor
6.
Biomedical and Environmental Sciences ; (12): 12-22, 2018.
Article in English | WPRIM | ID: wpr-311324

ABSTRACT

<p><b>OBJECTIVE</b>This study aimed to evaluate the hepatotoxicity, metabolic disturbance activity and endocrine disrupting activity of mice treated by Decabromodiphenyl ethane (DBDPE).</p><p><b>METHODS</b>In this study, Balb/C mice were treated orally by gavage with various doses of DBDPE. After 30 days of treatment, mice were sacrificed; blood, livers and thyroid glands were obtained, and hepatic microsomes were isolated. Biochemical parameters including 8 clinical chemistry parameters, blood glucose and hormone levels including insulin and thyroid hormone were assayed. The effects of DBDPE on hepatic cytochrome P450 (CYP) levels and activities and uridinediphosphate-glucuronosyltransferase (UDPGT) activities were investigated. Liver and thyroid glands were observed.</p><p><b>RESULTS</b>There were no obvious signs of toxicity and no significant treatment effect on body weight, or liver-to-body weight ratios between treatment groups. The levels of ALT and AST of higher dose treatment groups were markedly increased. Blood glucose levels of treatment groups were higher than those of control group. There was also an induction in TSH, T3, and fT3. UDPGT, PROD, and EROD activities were found to have been increased significantly in the high dose group. Histopathologic liver changes were characterized by hepatocyte hypertrophy and cytoplasmic vacuolization. Our findings suggest that DBDPE can cause a certain degree of mouse liver damage and insufficiency.</p><p><b>CONCLUSION</b>DBDPE has the activity of endocrine disruptors in Bal/C mice, which may induce drug-metabolizing enzymes including CYPs and UDPGT, and interfere with thyroid hormone levels mediated by AhR and CAR signaling pathways. Endocrine disrupting activity of DBDPE could also affect the glucose metabolism homeostasis.</p>

7.
Biomedical and Environmental Sciences ; (12): 122-125, 2014.
Article in English | WPRIM | ID: wpr-247075

ABSTRACT

Information regarding decabromodiphenyl ethane (DBDPE) effects on hepatotoxicity and metabolism is limited. In the present study, Wistar rats were given oral DBDPE at different doses. DBDPE induced oxidative stress, elevated blood glucose levels, increased CYP2B2 mRNA, CYP2B1/2 protein, 7-pentoxyresorufin O-depentylase (PROD) activity, and induced CYP3A2 mRNA, CYP3A2 protein, and luciferin benzylether debenzylase (LBD) activity. UDPGT activity increased with its increasing exposure levels, suggesting that oral DBDPE exposure induces drug-metabolizing enzymes in rats via the CAR/PXR signaling pathway. The induction of CYPs and co-regulated enzymes of phase II biotransformation may affect the homeostasis of endogenous substrates, including thyroid hormones, which may, in turn, alter glucose metabolism.


Subject(s)
Animals , Female , Male , Rats , Bromobenzenes , Toxicity , Chemical and Drug Induced Liver Injury , Flame Retardants , Toxicity , Liver , Metabolism , Random Allocation , Rats, Wistar , Toxicity Tests
8.
Biomedical and Environmental Sciences ; (12): 338-345, 2013.
Article in English | WPRIM | ID: wpr-320333

ABSTRACT

<p><b>OBJECTIVE</b>To study single wall carbon nanotubes (SWCNT) and its role in inducing inflammatory cytokines in the cruor-fibrinolysis system of rat.</p><p><b>METHODS</b>Twenty one Wistar rats were divided into four groups: 1) control; 2) low-dose SWCNT (0.15 mg/kg BW); 3) medium-dose SWCNT (0.75 mg/kg BW); 4) high-dose SWCNT (1.5 mg/kg BW). Intratracheal instillation of SWCNT suspensions was administered to rats once per day for 21 days. In order to assess the exposure effect of SWCNT to the rats, activity of Inflammatory cytokine was measured and markers of cruor-fibrinolysis system were studied via ELSIA. Also, change in clotting time was recorded and histopathology was studied.</p><p><b>RESULTS</b>IL-6 and IL-8 concentrations of rats exposed to SWCNT were significantly higher than those in controls (P<0.05). The activity of inflammatory cytokines and histopathological change indicated that oxidative damage occurred. Change in clotting time in rats exposed to SWCNT decreased compared with controls. Meanwhile, t-PA (tissue-tupe plassminogen activator) and AT-III (antithrombin-III) levels in rats exposed to particulates increased or decreased significantly compared with controls (P<0.05). A similar trend was observed for D-dimer (D2D) levels, indicating that SWCNT can impact the cruor-fibrinolysis system of rat.</p><p><b>CONCLUSION</b>The results from our study suggest that an increased procoagulant activity and reduced fibrinolytic activity in rats exposed to SWCNT can cause pulmonary oxidative stress and inflammation, due to the release of pro-thrombotic and inflammatory cytokines into the blood circulation of rat.</p>


Subject(s)
Animals , Rats , Blood Coagulation , Body Weight , Cytokines , Metabolism , Fibrinolysis , Inflammation , Metabolism , Nanotubes, Carbon , Rats, Wistar
9.
Biomedical and Environmental Sciences ; (12): 495-501, 2012.
Article in English | WPRIM | ID: wpr-235511

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the toxic effects of decabromodiphenyl ethane (DBDPE), used as an alternative to decabromodiphenyl ether in vitro.</p><p><b>METHODS</b>HepG2 cells were cultured in the presence of DBDPE at various concentrations (3.125-100.0 mg/L) for 24, 48, and 72 h respectively and the toxic effect of DBDPE was studied.</p><p><b>RESULTS</b>As evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays and nuclear morphological changes, DBDPE inhibited HepG2 viability in a time- and dose-dependent manner within a range of 12.5 mg/L to 100 mg/L and for 48 h and 72 h. Induction of apoptosis was detected at 12.5-100 mg/L at 48 h and 72 h by propidium iodide staining, accompanied with overproduction of reactive oxygen species (ROS). Furthermore, N-acetyl-L-cysteine, a widely used ROS scavenger, significantly reduced DBDPE-induced ROS levels and increased HepG2 cells viability.</p><p><b>CONCLUSION</b>DBDPE has cytotoxic and anti-proliferation effect and can induce apoptosis in which ROS plays an important role.</p>


Subject(s)
Humans , Apoptosis , Bromobenzenes , Toxicity , Cell Survival , Dose-Response Relationship, Drug , Environmental Pollutants , Toxicity , Hep G2 Cells , Reactive Oxygen Species , Time Factors
10.
Biomedical and Environmental Sciences ; (12): 663-671, 2012.
Article in English | WPRIM | ID: wpr-320384

ABSTRACT

<p><b>OBJECTIVE</b>Air-borne particulates from different sources could have different physicochemical properties and inflammatory potentials. This study aims to characterize the chemical compositions and the toxicity of ambient particulate matter (PM) associated with traffic emissions.</p><p><b>METHODS</b>The concentrations of trace elements, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 were measured in samples collected at sites in Beijing, China. Their toxic effects on the pulmonary system of rats were investigated. Biochemical parameters (LDH, T-AOC, TP) and inflammatory cytokine(IL-6, IL-1, TNF-a) levels were measured in the lungs of rats exposed to traffic-related PM. Oxidative damage was observed. PM samples were taken from a near road site and an off road site in summer time in 2006.</p><p><b>RESULTS</b>The concentrations of the USEPA priority pollutant PAHs in both PM10 and PM2.5 were higher (299.658 and 348.412) at the near road site than those (237.728 and 268.472) at the off road site. The similar trend was observed for the concentrations of trace elements in PM. Compared to coarse particles (PM10), fine particles (PM2.5) have a greater adsorption capacity to enrich toxic elements than inhalable particles. Decrease in antioxidant capacity and an increase in the amount of lipid peroxidation products in rat lung tissues was observed.</p><p><b>CONCLUSION</b>The findings of the present study suggest that the differing inflammatory responses of PM collected from the two road sites might have been mediated by the differing physicochemical characteristics.</p>


Subject(s)
Animals , Male , Rats , Air Pollutants , Chemistry , Toxicity , Bronchoalveolar Lavage Fluid , Chemistry , China , Cities , Cytokines , Genetics , Metabolism , Gene Expression Regulation , Physiology , Lung , Metabolism , Particle Size , Particulate Matter , Toxicity , Rats, Wistar , Vehicle Emissions , Toxicity
11.
Biomedical and Environmental Sciences ; (12): 223-228, 2009.
Article in English | WPRIM | ID: wpr-360672

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats.</p><p><b>METHODS</b>PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (microm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method.</p><p><b>RESULTS</b>The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (microm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood.</p><p><b>CONCLUSION</b>PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (microm) and rate of tail are simple and valuable biomarkers of PM2.5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.</p>


Subject(s)
Animals , Male , Rats , DNA Damage , Drug Administration Routes , Drug Administration Schedule , Lung , Pathology , Lung Diseases , Blood , Pathology , Oxidative Stress , Particle Size , Particulate Matter , Toxicity , Rats, Wistar , Seasons
12.
Biomedical and Environmental Sciences ; (12): 144-149, 2008.
Article in English | WPRIM | ID: wpr-296072

ABSTRACT

<p><b>OBJECTIVE</b>To determine the impact of passive smoking and the protective effect of antioxidants such as vitamin E and quercetin on learning and memory ability of mouse offsprings.</p><p><b>METHODS</b>A passive smoking model of pregnant mice was established. Learning and memory ability was evaluated by the water maze test and long term potentiation (LTP). Nitric oxide (NO), content, nitric oxide synthase (NOS), acetylcholinesteras (Ache) activity in brain, vitamin E concentration, and reactive oxygen species (ROS) in serum were determined. The latency period (the time during which the mice swim from the starting position to the ending position) and errors (the number of mice entering the blind end) in control and antioxidant intervention groups were compared with those in the smoke exposure group after 6 days.</p><p><b>RESULTS</b>The latency period as well as errors in the air, control diet, tobacco smoke (TS), and vitamin E diet groups were decreased significantly as compared with the TS and control diet groups (P<0.05). LTP was restrained in the TS and control diet groups. LTP in all the antioxidant diet groups was significantly increased compared with the TS and control diet groups. In addition, NOS and acetylcholinesteras (Ache) activitiy was significantly higher in the TS and control diet groups than in the air and control diet group. NO content was not significantly different among the different groups, and significantly lower in the TS and vitamin E diet groups than in the TS group, control diet group, quercetin diet group, and mixture diet group (P<0.05). Vitamin E concentration and ROS activity in serum were correlated with the outcome of water maze and LTP.</p><p><b>CONCLUSION</b>Passive smoking reduces LTP formation by disturbing the hippocampus function of mice, by decreasing NOS and Ache activity and increasing NO content. Antioxidants (especially vitamin E) partially improve the learning and memory ability of offsprings whose mothers are exposed to tobacco smoke during pregnancy.</p>


Subject(s)
Animals , Female , Male , Mice , Pregnancy , Antioxidants , Body Weight , Brain , Metabolism , Learning , Long-Term Potentiation , Maternal Exposure , Maze Learning , Memory , Nitric Oxide , Metabolism , Nitric Oxide Synthase , Metabolism , Tobacco Smoke Pollution
13.
Journal of Environment and Health ; (12)2007.
Article in Chinese | WPRIM | ID: wpr-676844

ABSTRACT

Objective To investigate the toxic effect of nona-ferroso-ferric oxide(Nano-Fe_3O_4),nano-silicon dioxide(Nano- SiO_2)and single walled carbon nanotubes(SWCNTs)on the lung and mechanism in rats.Methods Fourty-nine Wistar rats were randomly divided into 7 groups,the control group,low and high dose groups of three nanomaterials.The rats were exposed by intratracheal instillation once two days for 5 weeks,and then killed by abdominal aorta bloodletting.The pathology of lung,lactate dehydrogenase(LDH),total antioxidant capacity(T-AOC),superoxide dismutase(SOD),malondialdehyde(MDA),interleukin-1(IL- l),interleukin-6(IL-6)and tumor necrosis factor-?(TNF-?)in bronchoalveolar lavage fluid(BALF)were determined.Results The fibrous tubercle and the matrix inflammation of lung tissue was found in the experimental groups.The activities of T-AOC and SOD decreased while IL-6 concentration increased significantly in the experimental groups(P

14.
Biomedical and Environmental Sciences ; (12): 43-47, 2005.
Article in English | WPRIM | ID: wpr-329603

ABSTRACT

<p><b>OBJECTIVE</b>To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism.</p><p><b>METHODS</b>DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used as a biomarker of oxidative DNA damage. The level of 8-OHdG in DNA exposed to ETSS was detected by high performance liquid chromatography with electrochemical detection. Organic and inorganic components in ETSS were analyzed by gas chromatography-mass spectrum and atomic absorption spectrum respectively.</p><p><b>RESULTS</b>Particle matters (PMs) and volatile organic compounds (VOCs) in ETSS could directly induce oxidative DNA damage and formation of 8-OHdG. There were 123 and 84 kinds of organic components in PMs and VOCs respectively, and 7 kinds of inorganic components in ETSS. Some components, especially quinones and polyphenols in ETSS, could produce free radicals in vitro by auto-oxidation without any biological activity systems, and with the catalytic reaction of metals, the DNA adduct 8-OHdG was produced.</p><p><b>CONCLUSION</b>ETSS have biological oxidative effect on DNA in vitro and in vivo, and expressed direct genotoxicity. 8-OHdG is a valuable biomarker of oxidative DNA damage.</p>


Subject(s)
Animals , Cattle , Female , Rats , Biomarkers , DNA , Metabolism , DNA Adducts , DNA Damage , Deoxyguanosine , Lung , Chemistry , Metabolism , Metals, Heavy , Organic Chemicals , Oxidation-Reduction , Tobacco Smoke Pollution
15.
Biomedical and Environmental Sciences ; (12): 164-168, 2005.
Article in English | WPRIM | ID: wpr-329583

ABSTRACT

<p><b>OBJECTIVE</b>To analyze protein changes in the lung of Wistar rats exposed to gaseous formaldehyde (FA) at 32-37 mg/m3 for 4 h/day for 15 days using proteomics technique.</p><p><b>METHODS</b>Lung samples were solubilized and separated by two-dimensional electrophoresis (2-DE), and gel patterns were scanned and analyzed for detection of differently expressed protein spots. These protein spots were identified by MALDI-TOF-MS and NCBInr protein database searching.</p><p><b>RESULTS</b>Four proteins were altered significantly in 32-37 mg/m3 FA group, with 3 proteins up-regulated, 1 protein down-regulated. The 4 proteins were identified as aldose reductase, LIM protein, glyceraldehyde-3-phosphate dehydrogenase, and chloride intracellular channel 3.</p><p><b>CONCLUSION</b>The four proteins are related to cell proliferation induced by FA and defense reaction of anti-oxidation. Proteomics is a powerful tool in research of environmental health, and has prospects in search for protein markers for disease diagnosis and monitoring.</p>


Subject(s)
Animals , Female , Rats , Administration, Inhalation , Databases, Protein , Electrophoresis, Gel, Two-Dimensional , Formaldehyde , Toxicity , Lung , Metabolism , Proteins , Metabolism , Proteomics , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL